Advertisements
Advertisements
Question
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Solution
4 cos2 A – 3 = 0
`=>` 4 cos2 A = 3
`=> cos^2A = 3/4`
`=> cosA = sqrt3/2`
We know cos 30° `= sqrt(3)/2`
So, A = 30°
L.H.S. = cos3 A = cos 90° = 0
R.H.S. = 4 cos3 A – 3 cos A
= 4 cos3 30° – 3 cos 30°
= `4(sqrt3/2)^3 - 3(sqrt3/2)`
= `(3sqrt3)/2 - (3sqrt3)/2`
= 0
L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B