Advertisements
Advertisements
Question
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Solution
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
= `2(tan(90^@-55^@)/cot55^@)^2 + (cot(90^@-35^@)/tan35^@)^2 - 3(sec(90^@-50^@)/(cosec50^@))`
= `2(cot55^@/cot55^@)^2 + (tan35^@/tan35^@)^2 - 3((cosec50^@)/(cosec50^@))` ...`[∵ tan (90^@ - theta) = cot theta` `cot(90^@ - theta) = tan theta` ` sec(90^@ - theta) = cosec theta`]
= 2 × (1)2 + (1)2 – 3 × 1
= 2 × 1 + 1 – 3
= 2 + 1 – 3
= 0
APPEARS IN
RELATED QUESTIONS
Evaluate.
cos225° + cos265° - tan245°
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
What is the maximum value of \[\frac{1}{\sec \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
The value of tan 1° tan 2° tan 3°…. tan 89° is
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?