Advertisements
Advertisements
प्रश्न
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
उत्तर
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
= `2(tan(90^@-55^@)/cot55^@)^2 + (cot(90^@-35^@)/tan35^@)^2 - 3(sec(90^@-50^@)/(cosec50^@))`
= `2(cot55^@/cot55^@)^2 + (tan35^@/tan35^@)^2 - 3((cosec50^@)/(cosec50^@))` ...`[∵ tan (90^@ - theta) = cot theta` `cot(90^@ - theta) = tan theta` ` sec(90^@ - theta) = cosec theta`]
= 2 × (1)2 + (1)2 – 3 × 1
= 2 × 1 + 1 – 3
= 2 + 1 – 3
= 0
APPEARS IN
संबंधित प्रश्न
solve.
sec2 18° - cot2 72°
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Write the maximum and minimum values of sin θ.
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.