मराठी

If 160 3 Tan θ = a B , Then a Sin θ + B Cos θ a Sin θ − B Cos θ - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 

पर्याय

  • \[\frac{a^2 + b^2}{a^2 - b^2}\]

  • \[\frac{a^2 - b^2}{a^2 + b^2}\]

  • \[\frac{a + b}{a - b}\]

  • \[\frac{a - b}{a + b}\]

MCQ

उत्तर

Given :` tan θ = a/b' 

We have to find the value of following expression in terms of a and b

We know that:  `tanθ="Perpendicular"/"Base"`

⇒`" Base" =b` 

⇒` "Perpendicular=a"` 

⇒`" Hypotenuse"=sqrt (a^2+b^2)` 

Now we find,

`(a sinθ+b cos θ)/(a sinθ-b cos θ)=(a(a/(a^2+b^2))+b (b/(a^2+b^2)))/(a(a/(a^2+b^2))-b(b/(a^2+b^2)))` 

=`((a^2+b^2)/(a^2+b^2))/((a^2-b^2)/(a^2+b^2))`

=`(a^2+b^2)/(a^2-b^2)`

Hence the correct option is  (a)

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 2 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


Prove the following trigonometric identities.

(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1


Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`


Evaluate:

`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`


Find the value of angle A, where 0° ≤ A ≤ 90°.

sin (90° – 3A) . cosec 42° = 1


Use tables to find cosine of 8° 12’


Use tables to find cosine of 26° 32’


Use tables to find cosine of 65° 41’


Use trigonometrical tables to find tangent of 17° 27'


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


Evaluate:

sin 27° sin 63° – cos 63° cos 27°


If A + B = 90° and \[\cos B = \frac{3}{5}\]  what is the value of sin A? 


The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\] 


If angles A, B, C to a ∆ABC from an increasing AP, then sin B = 


In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.

 

 


Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2


Prove that:

cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]


Evaluate:

3 cos 80° cosec 10°+ 2 sin 59° sec 31°


In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×