Advertisements
Advertisements
प्रश्न
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
पर्याय
\[\frac{a^2 + b^2}{a^2 - b^2}\]
\[\frac{a^2 - b^2}{a^2 + b^2}\]
\[\frac{a + b}{a - b}\]
\[\frac{a - b}{a + b}\]
उत्तर
Given :` tan θ = a/b'
We have to find the value of following expression in terms of a and b
We know that: `tanθ="Perpendicular"/"Base"`
⇒`" Base" =b`
⇒` "Perpendicular=a"`
⇒`" Hypotenuse"=sqrt (a^2+b^2)`
Now we find,
`(a sinθ+b cos θ)/(a sinθ-b cos θ)=(a(a/(a^2+b^2))+b (b/(a^2+b^2)))/(a(a/(a^2+b^2))-b(b/(a^2+b^2)))`
=`((a^2+b^2)/(a^2+b^2))/((a^2-b^2)/(a^2+b^2))`
=`(a^2+b^2)/(a^2-b^2)`
Hence the correct option is (a)
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find cosine of 8° 12’
Use tables to find cosine of 26° 32’
Use tables to find cosine of 65° 41’
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?