English

If 160 3 Tan θ = a B , Then a Sin θ + B Cos θ a Sin θ − B Cos θ - Mathematics

Advertisements
Advertisements

Question

If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 

Options

  • \[\frac{a^2 + b^2}{a^2 - b^2}\]

  • \[\frac{a^2 - b^2}{a^2 + b^2}\]

  • \[\frac{a + b}{a - b}\]

  • \[\frac{a - b}{a + b}\]

MCQ

Solution

Given :` tan θ = a/b' 

We have to find the value of following expression in terms of a and b

We know that:  `tanθ="Perpendicular"/"Base"`

⇒`" Base" =b` 

⇒` "Perpendicular=a"` 

⇒`" Hypotenuse"=sqrt (a^2+b^2)` 

Now we find,

`(a sinθ+b cos θ)/(a sinθ-b cos θ)=(a(a/(a^2+b^2))+b (b/(a^2+b^2)))/(a(a/(a^2+b^2))-b(b/(a^2+b^2)))` 

=`((a^2+b^2)/(a^2+b^2))/((a^2-b^2)/(a^2+b^2))`

=`(a^2+b^2)/(a^2-b^2)`

Hence the correct option is  (a)

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.5 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.5 | Q 2 | Page 56

RELATED QUESTIONS

If sin θ =3/5, where θ is an acute angle, find the value of cos θ.


if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`


Express the following in terms of angles between 0° and 45°:

cosec68° + cot72°


Evaluate:

3cos80° cosec10° + 2 sin59° sec31°


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`


If tanθ = 2, find the values of other trigonometric ratios.


∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.


Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]


If A + B = 90° and \[\cos B = \frac{3}{5}\]  what is the value of sin A? 


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


The value of cos2 17° − sin2 73° is 


If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


Evaluate: cos2 25° - sin2 65° - tan2 45°


A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`


If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.


If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×