Advertisements
Advertisements
Question
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
Options
\[\frac{a^2 + b^2}{a^2 - b^2}\]
\[\frac{a^2 - b^2}{a^2 + b^2}\]
\[\frac{a + b}{a - b}\]
\[\frac{a - b}{a + b}\]
Solution
Given :` tan θ = a/b'
We have to find the value of following expression in terms of a and b
We know that: `tanθ="Perpendicular"/"Base"`
⇒`" Base" =b`
⇒` "Perpendicular=a"`
⇒`" Hypotenuse"=sqrt (a^2+b^2)`
Now we find,
`(a sinθ+b cos θ)/(a sinθ-b cos θ)=(a(a/(a^2+b^2))+b (b/(a^2+b^2)))/(a(a/(a^2+b^2))-b(b/(a^2+b^2)))`
=`((a^2+b^2)/(a^2+b^2))/((a^2-b^2)/(a^2+b^2))`
=`(a^2+b^2)/(a^2-b^2)`
Hence the correct option is (a)
APPEARS IN
RELATED QUESTIONS
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
If tanθ = 2, find the values of other trigonometric ratios.
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
The value of cos2 17° − sin2 73° is
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Evaluate: cos2 25° - sin2 65° - tan2 45°
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.