Advertisements
Advertisements
Question
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
Solution
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
= `cot theta/cot theta + (sin theta* tan theta xx "cosec" theta)/(cos theta xx tan theta * sec theta)`
= `1 + sin theta/cos theta xx 1/sintheta xx costheta/1`
= 1 + 1
= 2
APPEARS IN
RELATED QUESTIONS
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°