Advertisements
Advertisements
Question
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
Solution
2 cos2 A + cos A – 1 = 0
`=>` 2 cos2 A + 2 cos A – cos A – 1 = 0
`=>` 2 cos A (cos A + 1) – 1(cos A + 1) = 0
`=>` (2 cos A – 1)(cos A + 1) = 0
`=>` cos A = `1/2` or cos A = –1
We know `cos 60^circ = 1/2`
We also know that for no value of A(0° ≤ A ≤ 90°), cos A = –1.
Hence, A = 60°
APPEARS IN
RELATED QUESTIONS
Show that cos 38° cos 52° − sin 38° sin 52° = 0
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
solve.
cos240° + cos250°
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
Write the value of tan 10° tan 15° tan 75° tan 80°?
If tan θ = cot 37°, then the value of θ is