English

If Cosec a = Sqrt2 Find the Value of (2 Sin^2 a + 3 Cot^2 A)/(4(Tan^2 a - Cos^2 A)) - Mathematics

Advertisements
Advertisements

Question

if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`

Solution

Given `cosec A = sqrt2`

We have to find the value of the expression  `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`

We know that

`cosec A =sqrt2`

`=> sin A = 1/(cosec A) = 1/sqrt2`

`cos A = sqrt(1 - sin^2 A) = sqrt(1 - (1/sqrt2)^2) = 1/sqrt2`

`tan A = sin A/cos A = (1/sqrt2)/(1/sqrt2) = 1`

`cot A = 1/tan A = 1/1 = 1`

Therefore,

`(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A)) = (2 xx (1/sqrt2)^2 + 3 xx 1^2)/(4(1^2 - (1/sqrt2)^2))`

= 2

Hence, the value of the given expression is 2

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.2 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.2 | Q 7 | Page 54

RELATED QUESTIONS

If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


Prove the following trigonometric identities.

(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1


if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)` 


solve.
cos240° + cos250°


Evaluate.
sin235° + sin255°


Use tables to find cosine of 65° 41’


Use tables to find cosine of 9° 23’ + 15° 54’


If A and B are complementary angles, prove that:

cot B + cos B = sec A cos B (1 + sin B)


Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0


If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 

The value of cos 1° cos 2° cos 3° ..... cos 180° is 


In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.

 

 


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


Express the following in term of angles between 0° and 45° :

cosec 68° + cot 72°


Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.


Find the value of the following:

`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`


Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×