English

If sin θ =7/25, where θ is an acute angle, find the value of cos θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

If sin θ =7/25, where θ is an acute angle, find the value of cos θ.

Sum

Solution

`sintheta=7/25`

we know `sin theta="Opposite"/"Hypotunes"=p/h`

`therefore p/h=7/25`                             [∵ Opposite = Perpendicular = p]

p=7k, h=25k

Let the adjacent (base) side be b.

Thus `b=sqrt((25k)^2-(7k)^2)=24k`

`costheta=(24k)/(25k)=24/25`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Set A

RELATED QUESTIONS

If the angle θ= –60º, find the value of cosθ.


Without using trigonometric tables evaluate the following:

`(i) sin^2 25º + sin^2 65º `


Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


solve.
sec18° - cot2 72°


Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Use tables to find sine of 62° 57'


Evaluate:

`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


If 8 tan x = 15, then sin x − cos x is equal to 


If tan2 45° − cos2 30° = x sin 45° cos 45°, then x


If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 


If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`


If sec A + tan A = x, then sec A = ______.


The value of (tan1° tan2° tan3° ... tan89°) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×