English

If Cos θ = 2 3 Then 2 Sec2 θ + 2 Tan2 θ − 7 is Equal to - Mathematics

Advertisements
Advertisements

Question

If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 

Options

  • 0

  •  3

MCQ

Solution

Given that:  `cos θ=2/3`

We have to find `2 sec^2 c+2 tan ^2 θ-7`

As we are given 

`cos θ=2/3` 

⇒ `"Base"=2`

⇒ `"Hypotenuse"=3` 

⇒ `"Perpendicular"= sqrt((3)^2-(2)^2)` 

⇒`"Perpendicular"=sqrt5` 

We know that: 

`cos θ="Base"/"Hypotenuse"` 

`tan θ= "Perpendicular"/"Base"` 

Now we have to find:` 2 sec^2θ+2 tan^2 θ-7.` so 

`2 sec^2θ+2 tan ^2 θ-7` 

=`2(3/2)^2+2(sqrt5/2)^2-7` 

= `18/4+10/4-7` 

=`(18+10-28)/4` 

= 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.5 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.5 | Q 31 | Page 58

RELATED QUESTIONS

Without using trigonometric tables evaluate the following:

`(i) sin^2 25º + sin^2 65º `


Evaluate cosec 31° − sec 59°


Show that cos 38° cos 52° − sin 38° sin 52° = 0


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


Evaluate:

`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2)  cos45^circ`


Evaluate:

`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`


Use tables to find sine of 10° 20' + 20° 45'


Use tables to find the acute angle θ, if the value of sin θ is 0.6525


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


Evaluate:

cos 40° cosec 50° + sin 50° sec 40°


If A and B are complementary angles, prove that:

`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If A + B = 90° and \[\cos B = \frac{3}{5}\]  what is the value of sin A? 


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 


In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?


In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.


If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.


`tan 47^circ/cot 43^circ` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×