Advertisements
Advertisements
Question
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Options
1
0
3
4
Solution
Given that: `cos θ=2/3`
We have to find `2 sec^2 c+2 tan ^2 θ-7`
As we are given
`cos θ=2/3`
⇒ `"Base"=2`
⇒ `"Hypotenuse"=3`
⇒ `"Perpendicular"= sqrt((3)^2-(2)^2)`
⇒`"Perpendicular"=sqrt5`
We know that:
`cos θ="Base"/"Hypotenuse"`
`tan θ= "Perpendicular"/"Base"`
Now we have to find:` 2 sec^2θ+2 tan^2 θ-7.` so
`2 sec^2θ+2 tan ^2 θ-7`
=`2(3/2)^2+2(sqrt5/2)^2-7`
= `18/4+10/4-7`
=`(18+10-28)/4`
= 0
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
Evaluate cosec 31° − sec 59°
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Use tables to find sine of 10° 20' + 20° 45'
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
`tan 47^circ/cot 43^circ` = 1