Advertisements
Advertisements
Question
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
Solution
sin A = 1 .....[Given]
But, sin 90° = 1
∴ sin A = sin 90°
∴ A = 90°
`sqrt(2)` AC = BC .....[Given]
∴ `"AC"/"BC" = 1/sqrt(2)` .....(i)
∴ sin B = `"AC"/"BC"` ......(ii) [By definition]
∴ sin B = `1/sqrt(2)` .....[From (i) and (ii)]
But, sin 45° = `1/sqrt(2)`
∴ sin B = sin 45°
∴ B = 45°
sin2A + sin2B + sin2C = 2 .....[Given]
∴ `(1)^2 + (1/sqrt(2))^2 + sin^2"C"` = 2
∴ `1 + 1/2 + sin^2"C"` = 2
∴ sin2C = `2 - 3/2`
∴ sin2C = `1/2`
∴ sin C = `1/sqrt(2)`
But, sin 45° = `1/sqrt(2)`
∴ sin C = sin 45°
∴ C = 45°
∴ ∠A = 90°, ∠B = 45°, ∠C = 45°
APPEARS IN
RELATED QUESTIONS
If the angle θ= –60º, find the value of cosθ.
If tan A = cot B, prove that A + B = 90
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
solve.
sec2 18° - cot2 72°
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Evaluate:
tan(55° - A) - cot(35° + A)
Use tables to find sine of 47° 32'
Use trigonometrical tables to find tangent of 42° 18'
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
The value of tan 10° tan 15° tan 75° tan 80° is
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
The value of tan 72° tan 18° is
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)