English

If sec A = x+14x, then show that sec A + tan A = 2x or 12x - Geometry Mathematics 2

Advertisements
Advertisements

Question

If sec A = `x + 1/(4x)`, then show that sec A + tan A = 2x or `1/(2x)`

Sum

Solution

sec A = `x + 1/(4x)`    .....[Given]

We know that,

1 + tan2A = sec2A

∴ tan2A = sec2A – 1

= `(x + 1/(4x))^2 - 1`

= `x^2 + 2 xx x  xx 1/(4x) + (1/(4x))^2 - 1`  ......[∵ (a + b)2 = a2 + 2ab + b2]

= `x^2 + 1/2 + 1/(16x^2) - 1`

= `x^2 - 1/2 + 1/(16x^2)`

∴ tan2A = `(x - 1/(4x))^2`   ......[∵ a2 – 2ab + b2 = (a – b)2]

∴ tan A = `x - 1/(4x)` or tan A = `-(x - 1/(4x))`

When tan A = `x - 1/(4x)`,

sec A + tan A

= `x + 1/(4x) + x - 1/(4x)`

= 2x

When tan A = `-(x - 1/(4x))`,

sec A + tan A

= `x + 1/(4x) - (x - 1/(4x))`

= `x + 1/(4x) - x + 1/(4x)`

= `2/(4x)`

= `1/(2x)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.4
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×