Advertisements
Advertisements
प्रश्न
If sec A = `x + 1/(4x)`, then show that sec A + tan A = 2x or `1/(2x)`
बेरीज
उत्तर
sec A = `x + 1/(4x)` .....[Given]
We know that,
1 + tan2A = sec2A
∴ tan2A = sec2A – 1
= `(x + 1/(4x))^2 - 1`
= `x^2 + 2 xx x xx 1/(4x) + (1/(4x))^2 - 1` ......[∵ (a + b)2 = a2 + 2ab + b2]
= `x^2 + 1/2 + 1/(16x^2) - 1`
= `x^2 - 1/2 + 1/(16x^2)`
∴ tan2A = `(x - 1/(4x))^2` ......[∵ a2 – 2ab + b2 = (a – b)2]
∴ tan A = `x - 1/(4x)` or tan A = `-(x - 1/(4x))`
When tan A = `x - 1/(4x)`,
sec A + tan A
= `x + 1/(4x) + x - 1/(4x)`
= 2x
When tan A = `-(x - 1/(4x))`,
sec A + tan A
= `x + 1/(4x) - (x - 1/(4x))`
= `x + 1/(4x) - x + 1/(4x)`
= `2/(4x)`
= `1/(2x)`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?