मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

In ∆ABC, 2 AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?

बेरीज

उत्तर


sin A = 1    .....[Given]

But, sin 90° = 1

∴ sin A = sin 90°

∴ A = 90°

`sqrt(2)` AC = BC  .....[Given]

∴ `"AC"/"BC" = 1/sqrt(2)`    .....(i)

∴ sin B = `"AC"/"BC"`   ......(ii) [By definition]

∴ sin B = `1/sqrt(2)`   .....[From (i) and (ii)]

But, sin 45° = `1/sqrt(2)`

∴ sin B = sin 45°

∴ B = 45°

sin2A + sin2B + sin2C = 2   .....[Given]

∴ `(1)^2 + (1/sqrt(2))^2 + sin^2"C"` = 2

∴ `1 + 1/2 + sin^2"C"` = 2

∴ sin2C = `2 - 3/2`

∴ sin2C = `1/2`

∴ sin C = `1/sqrt(2)`

But, sin 45° = `1/sqrt(2)`

∴ sin C = sin 45°

∴ C = 45°

∴ ∠A = 90°, ∠B = 45°, ∠C = 45°

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.4

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;

(i) cosec 69º + cot 69º

(ii) sin 81º + tan 81º

(iii) sin 72º + cot 72º


Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ


if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`


Solve.
`cos22/sin68`


Solve.
`cos55/sin35+cot35/tan55`


Express the following in terms of angles between 0° and 45°:

cos74° + sec67°


Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°


Evaluate:

`sec26^@ sin64^@ + (cosec33^@)/sec57^@`


If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?


If tan2 45° − cos2 30° = x sin 45° cos 45°, then x


The value of cos2 17° − sin2 73° is 


If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]


Prove that:

\[\frac{sin\theta  \cos(90°  - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`


If cot( 90 – A ) = 1, then ∠A = ?


In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?


If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.


The value of the expression (cos2 23° – sin2 67°) is positive.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×