Advertisements
Advertisements
प्रश्न
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
उत्तर
sin A = 1 .....[Given]
But, sin 90° = 1
∴ sin A = sin 90°
∴ A = 90°
`sqrt(2)` AC = BC .....[Given]
∴ `"AC"/"BC" = 1/sqrt(2)` .....(i)
∴ sin B = `"AC"/"BC"` ......(ii) [By definition]
∴ sin B = `1/sqrt(2)` .....[From (i) and (ii)]
But, sin 45° = `1/sqrt(2)`
∴ sin B = sin 45°
∴ B = 45°
sin2A + sin2B + sin2C = 2 .....[Given]
∴ `(1)^2 + (1/sqrt(2))^2 + sin^2"C"` = 2
∴ `1 + 1/2 + sin^2"C"` = 2
∴ sin2C = `2 - 3/2`
∴ sin2C = `1/2`
∴ sin C = `1/sqrt(2)`
But, sin 45° = `1/sqrt(2)`
∴ sin C = sin 45°
∴ C = 45°
∴ ∠A = 90°, ∠B = 45°, ∠C = 45°
APPEARS IN
संबंधित प्रश्न
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
`cos22/sin68`
Solve.
`cos55/sin35+cot35/tan55`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of cos2 17° − sin2 73° is
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
If cot( 90 – A ) = 1, then ∠A = ?
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
The value of the expression (cos2 23° – sin2 67°) is positive.