Advertisements
Advertisements
प्रश्न
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
पर्याय
2
−2
\[- \frac{1}{2}\]
\[\frac{1}{2}\]
उत्तर
We are given:` tan^2 45°-cos^2 30°=x sin 45° cos 45°`
We have to find x
⇒` 1-(sqrt3/2)^2=x 1/sqrt2 xx1/sqrt2`
⇒ `1-3/4=x/2`
⇒ `1/4=x/2`
⇒`x=1/2`
We know that ` sin°45=1/sqrt2 , cos 45°=1/sqrt2, tan 45°=1, cos 30°=sqrt3/2`
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
Solve: 2cos2θ + sin θ - 2 = 0.
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.