मराठी

If 5θ and 4θ Are Acute Angles Satisfying Sin 5θ = Cos 4θ, Then 2 Sin 3θ − √ 3 Tan 3 θ is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 

पर्याय

  •  1

  •  0

  •  −1

  • \[1 + \sqrt{3}\]

MCQ

उत्तर

We are given that 5θ and 4θ are acute angles satisfying the following condition sin 5θ = cos 4θ. We are asked to find 2 `sin 3θ -sqrt3 tan 3θ `

⇒ `sin 5θ= cos 4θ`

⇒` cos (90°-5θ)= cos 4θ` 

⇒` 90°-5θ=4θ` 

⇒ `90=90°` 

Where `5θ` and `4θ` are acute angles 

⇒ `θ=10°`

Now we have to find: 

 `2 sin 3θ-sqrt3 tan 3θ` 

=` 2 sin 30°-sqrt3 tan 30°` 

= `2xx1/2-sqrt3xx1/sqrt3`

=`1-1`

=` 0`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 25 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If tan A = cot B, prove that A + B = 90


What is the value of (cos2 67° – sin2 23°)?


Solve.
`cos22/sin68`


solve.
sec18° - cot2 72°


Evaluate:

3cos80° cosec10° + 2 sin59° sec31°


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


Use tables to find the acute angle θ, if the value of cos θ is 0.9574


Use tables to find the acute angle θ, if the value of tan θ is 0.2419


Prove that:

sec (70° – θ) = cosec (20° + θ)


If A + B = 90° and \[\cos B = \frac{3}{5}\]  what is the value of sin A? 


If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:


If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\] 


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]


Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.


Solve: 2cos2θ + sin θ - 2 = 0.


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×