Advertisements
Advertisements
प्रश्न
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
उत्तर
sin (90° = θ) = cos θ
cos (90° = θ) = sinθ
3 sin (90° - 80°) cosec 10° + 2 cos (90° - 59°) sec 31°
3 sin 10° cosec 10° + 2 cos 31° sec31°
sin θ cosecθ = 1, cos θ secθ = 1
3 + 2 = 5
APPEARS IN
संबंधित प्रश्न
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Evaluate: cos2 25° - sin2 65° - tan2 45°
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`