Advertisements
Advertisements
प्रश्न
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
उत्तर
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
= `3 sin(90^circ - 18^circ)/(cos18^circ) - sec(90^circ - 58^circ)/(cosec58^circ)`
= `3 cos18^circ/(cos18^circ) - (cosec58^circ)/(cosec58^circ)`
= 3 – 1
= 2
APPEARS IN
संबंधित प्रश्न
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Write the maximum and minimum values of sin θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
The value of tan 72° tan 18° is
Sin 2B = 2 sin B is true when B is equal to ______.