Advertisements
Advertisements
Question
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Solution
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
= `3 sin(90^circ - 18^circ)/(cos18^circ) - sec(90^circ - 58^circ)/(cosec58^circ)`
= `3 cos18^circ/(cos18^circ) - (cosec58^circ)/(cosec58^circ)`
= 3 – 1
= 2
APPEARS IN
RELATED QUESTIONS
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.