Advertisements
Advertisements
Question
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Solution
sin x = sin 60° cos 30° + cos 60° sin 30°
sin x = `(sqrt3/2)(sqrt3/2) + (1/2)(1/2)`
sin x = `3/4 + 1/4 = 1 = sin 90^circ`
Hence, x = 90°
APPEARS IN
RELATED QUESTIONS
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find cosine of 9° 23’ + 15° 54’
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
The value of tan 1° tan 2° tan 3° ...... tan 89° is
The value of cos 1° cos 2° cos 3° ..... cos 180° is
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.