Advertisements
Advertisements
प्रश्न
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
उत्तर
sin x = sin 60° cos 30° + cos 60° sin 30°
sin x = `(sqrt3/2)(sqrt3/2) + (1/2)(1/2)`
sin x = `3/4 + 1/4 = 1 = sin 90^circ`
Hence, x = 90°
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
What is the maximum value of \[\frac{1}{\sec \theta}\]
If 8 tan x = 15, then sin x − cos x is equal to
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.