Advertisements
Advertisements
प्रश्न
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
पर्याय
\[\frac{12}{5}\]
\[\frac{5}{12}\]
\[\frac{13}{12}\]
\[\frac{12}{13}\]
उत्तर
We have the following given data in the figure, `AD=4cm, BD=3 cm, CB=12 cm`
Now we will use Pythagoras theorem in, ΔABD
`AB=sqrt(3^2+4^2)`
= 5 cm
Therefore,
`cot θ =( CB)/(AB)`
=`12/5`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Write all the other trigonometric ratios of ∠A in terms of sec A.
Solve.
`cos22/sin68`
Solve.
`tan47/cot43`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Use tables to find sine of 62° 57'
Use tables to find cosine of 26° 32’
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If A and B are complementary angles, then
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
If tan θ = 1, then sin θ . cos θ = ?