मराठी

In the Following Figure. Ad = 4 Cm, Bd = 3 Cm and Cb = 12 Cm, Find the Cot θ. - Mathematics

Advertisements
Advertisements

प्रश्न

In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.

 

 

पर्याय

  • \[\frac{12}{5}\]

  • \[\frac{5}{12}\]

  • \[\frac{13}{12}\]

  • \[\frac{12}{13}\]

MCQ

उत्तर

We have the following given data in the figure, `AD=4cm, BD=3 cm, CB=12 cm`

Now we will use Pythagoras theorem in, ΔABD 

`AB=sqrt(3^2+4^2)` 

= 5 cm

Therefore, 

`cot θ  =( CB)/(AB)`

=`12/5` 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 35 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using trigonometric tables, evaluate the following:

`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`


Write all the other trigonometric ratios of ∠A in terms of sec A.


Solve.
`cos22/sin68`


Solve.
`tan47/cot43`


For triangle ABC, show that : `tan  (B + C)/2 = cot  A/2`


Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°


Find the value of angle A, where 0° ≤ A ≤ 90°.

cos (90° – A) . sec 77° = 1


Use tables to find sine of 62° 57'


Use tables to find cosine of 26° 32’


Use tables to find the acute angle θ, if the value of tan θ is 0.4741


Evaluate:

`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0


Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]


Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°. 


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


If A and B are complementary angles, then


If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 


If tan θ = 1, then sin θ . cos θ = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×