Advertisements
Advertisements
प्रश्न
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
उत्तर
From the tables, it is clear that tan 25° 18’ = 0.4727
tan θ − tan 25° 18’ = 0.4741 − 0.4727 = 0.0014
From the tables, diff of 4’ = 0.0014
Hence, θ = 25° 18’ + 4’ = 25° 22’
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Evaluate `(tan 26^@)/(cot 64^@)`
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use tables to find cosine of 65° 41’
Use trigonometrical tables to find tangent of 37°
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`