Advertisements
Advertisements
प्रश्न
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
उत्तर
From the tables, it is clear that tan 36° 24’ = 0.7373
tan θ − tan 36° 24’ = 0.7391 − 0.7373 = 0.0018
From the tables, diff of 4’ = 0.0018
Hence, θ = 36° 24’ + 4’ = 36° 28’
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.