Advertisements
Advertisements
प्रश्न
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
उत्तर
Since Δ ABC is a right angled triangle, right angled at B,
A + C = 90°
∴ `(sec "A".sin "C" - tan "A". tan "C")/sin "B"`
= `(sec "A"(90° - "C")sin "C" - tan(90° - "C")tan "C")/(sin 90°)`
= `("cosec" "C" sin "C" - cot "C" tan "C")/(1)`
= `(1)/sin "C" xx sin "C" - (1)/tan "C" xx tan "C"`
= 1 - 1
= 0
APPEARS IN
संबंधित प्रश्न
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.