Advertisements
Advertisements
Question
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
Solution
Since Δ ABC is a right angled triangle, right angled at B,
A + C = 90°
∴ `(sec "A".sin "C" - tan "A". tan "C")/sin "B"`
= `(sec "A"(90° - "C")sin "C" - tan(90° - "C")tan "C")/(sin 90°)`
= `("cosec" "C" sin "C" - cot "C" tan "C")/(1)`
= `(1)/sin "C" xx sin "C" - (1)/tan "C" xx tan "C"`
= 1 - 1
= 0
APPEARS IN
RELATED QUESTIONS
Solve.
sin42° sin48° - cos42° cos48°
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)