Advertisements
Advertisements
Question
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Solution
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
= 3 cos (90° – 10°) cosec 10° + 2 cos (90° – 31°) cosec 31°
= 3 sin 10° cosec 10° + 2 sin 31° cosec 31°
= 3 + 2
= 5
APPEARS IN
RELATED QUESTIONS
If the angle θ= –60º, find the value of cosθ.
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Solve.
`tan47/cot43`
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If A and B are complementary angles, then
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.