Advertisements
Advertisements
Question
If the angle θ= –60º, find the value of cosθ.
Solution
We know that,
cos(-α) = cosα
∴ cos(-60°) = cos60°
∴ cos(-60°) = 1/2
∴ cos(-60°) = cosθ = 1/2
∴ cosθ = 1/2
APPEARS IN
RELATED QUESTIONS
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
solve.
cos240° + cos250°
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Use tables to find cosine of 9° 23’ + 15° 54’
Use trigonometrical tables to find tangent of 42° 18'
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`