Advertisements
Advertisements
Question
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
Solution
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A))`
= `1/(1 + sinA) + 1/(1 - sinA)`
= `(1 - sinA + 1 + sinA)/((1 + sinA)(1 - sinA))`
= `2/(1 - sin^2A)`
= `2/cos^2A`
= 2 sec2 A
= 2 cosec2 (90° – A)
APPEARS IN
RELATED QUESTIONS
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Use trigonometrical tables to find tangent of 37°
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
If tanθ = 2, find the values of other trigonometric ratios.
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`