Advertisements
Advertisements
Question
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
Solution
`sintheta=3/5`
we know `sin theta="Opposite"/"Hypotunes"=p/h`
`therefore p/h=3/5` [∵ Opposite = Perpendicular = p]
p=3k, h=5k
Let the adjacent (base) side be b.
Thus `b=sqrt((5k)^2-(3k)^2)=4k`
`costheta=(4k)/(5k)=4/5`
APPEARS IN
RELATED QUESTIONS
If the angle θ = -60° , find the value of sinθ .
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Use tables to find sine of 34° 42'
Use tables to find cosine of 65° 41’
Use trigonometrical tables to find tangent of 37°
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
The value of cos2 17° − sin2 73° is
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
Evaluate: cos2 25° - sin2 65° - tan2 45°
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
The value of tan 1° tan 2° tan 3°…. tan 89° is