Advertisements
Advertisements
Question
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
Solution
It is given that `tan θ=4/5` .
We have to find \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
\[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
= `1-( sinθ/cos θ)/(1+sinθ/cos θ)` [Dividing both numberator and denominator by cos θ]
=`(1-tanθ)/(1+ tan θ)`
= `(1-4/5)/(1+4/5)`
=`1/9`
APPEARS IN
RELATED QUESTIONS
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find sine of 34° 42'
Use tables to find cosine of 65° 41’
Use tables to find cosine of 9° 23’ + 15° 54’
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.