Advertisements
Advertisements
Question
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
Options
\[\frac{1}{2}\]
\[\frac{\sqrt{3}}{2}\]
1
\[\frac{1}{\sqrt{2}}\]
Solution
Let the angles of a triangle Δ ABC be (a-d), (a),(a+d)espectively which constitute an A.P.As we know that sum of all the three angles of a triangle is 180°. so, (a-d)+a(a+d)=180°
So, a =60°
Therefore, ∠ B= 60°
Hence, `sin ∠B= sqrt3/2`
APPEARS IN
RELATED QUESTIONS
If the angle θ= –60º, find the value of cosθ.
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find sine of 47° 32'
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.