Advertisements
Advertisements
Question
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
Options
\[\frac{4}{7}\]
\[\frac{3}{7}\]
\[\frac{2}{7}\]
\[\frac{1}{7}\]
Solution
Given that:
`sec^2θ=3`
`secθ=sqrt3`
We need to find the value of the expression
`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)`
`"since" secθ="Hypotenuse"/"Base"`. so
⇒` "Hypotenuse"= sqrt3`
⇒ `"Base"=1`
⇒ `"Perpendicular"=sqrt(3-1)`
⇒ `"Perpendicular"=sqrt2`
Here we have to find: `(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)`
⇒`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ) = (2/1-3/2)/(2/1+3/2)`
⇒`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)=(1/2)/(7/2)`
⇒`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)=1/7`
APPEARS IN
RELATED QUESTIONS
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
`cos22/sin68`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate.
cos225° + cos265° - tan245°
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Use tables to find cosine of 26° 32’
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
If cot( 90 – A ) = 1, then ∠A = ?
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.
The value of the expression (cos2 23° – sin2 67°) is positive.