Advertisements
Advertisements
Question
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Solution
Given `tan theta = 12/5`
We have to find the value of the expression `(1 + sin theta)/(1 -sin theta)`
From the above figure, we have
`AC = sqrt((AB)^2 + (BC)^2)`
`= sqrt(12^2 + 5^2)`
= 13
`=> sin theta = 12/13`
Therefore
`(1 +sin theta)/(1 + sin theta) = (1 + 12/13)/(1 - 12/13)`
= 25
Hence, the value of the given expression is 25
APPEARS IN
RELATED QUESTIONS
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
If tan A = cot B, prove that A + B = 90
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find cosine of 9° 23’ + 15° 54’
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
If cot( 90 – A ) = 1, then ∠A = ?
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A