Advertisements
Advertisements
प्रश्न
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
उत्तर
Given `tan theta = 12/5`
We have to find the value of the expression `(1 + sin theta)/(1 -sin theta)`
From the above figure, we have
`AC = sqrt((AB)^2 + (BC)^2)`
`= sqrt(12^2 + 5^2)`
= 13
`=> sin theta = 12/13`
Therefore
`(1 +sin theta)/(1 + sin theta) = (1 + 12/13)/(1 - 12/13)`
= 25
Hence, the value of the given expression is 25
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Solve.
`cos22/sin68`
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find cosine of 65° 41’
Use tables to find cosine of 9° 23’ + 15° 54’
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
If cot( 90 – A ) = 1, then ∠A = ?