Advertisements
Advertisements
प्रश्न
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
उत्तर
Terminal arm passes through (4,3).
Hence,
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Evaluate `(tan 26^@)/(cot 64^@)`
Evaluate.
cos225° + cos265° - tan245°
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
In the following figure the value of cos ϕ is
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
If tan θ = 1, then sin θ . cos θ = ?
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.