हिंदी

If tan θ = 1, then sin θ . cos θ = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If tan θ = 1, then sin θ . cos θ = ?

योग

उत्तर

tan θ = 1    ......[Given]

∴ θ = 45°     ......[∵ tan45° = 1]

∴ sin θ . cos θ = sin 45° cos 45°

= `1/sqrt(2)*1/sqrt(2)`

= `1/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.1 (B)

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write all the other trigonometric ratios of ∠A in terms of sec A.


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`


Show that : `sin26^circ/sec64^circ  + cos26^circ/(cosec64^circ) = 1`


Evaluate:

cosec (65° + A) – sec (25° – A)


Evaluate:

`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`


Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°


Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°


Use tables to find cosine of 9° 23’ + 15° 54’


Use trigonometrical tables to find tangent of 17° 27'


Evaluate:

`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)` 


If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`


If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?

If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\] 


Prove that:

\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.

cos(90° - A) · sec 77° = 1


Solve: 2cos2θ + sin θ - 2 = 0.


If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×