Advertisements
Advertisements
प्रश्न
If tan θ = 1, then sin θ . cos θ = ?
उत्तर
tan θ = 1 ......[Given]
∴ θ = 45° ......[∵ tan45° = 1]
∴ sin θ . cos θ = sin 45° cos 45°
= `1/sqrt(2)*1/sqrt(2)`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Write all the other trigonometric ratios of ∠A in terms of sec A.
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
cosec (65° + A) – sec (25° – A)
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find cosine of 9° 23’ + 15° 54’
Use trigonometrical tables to find tangent of 17° 27'
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If 3 cos θ = 5 sin θ, then the value of
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
Solve: 2cos2θ + sin θ - 2 = 0.
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A