Advertisements
Advertisements
प्रश्न
If 3 cos θ = 5 sin θ, then the value of
विकल्प
\[\frac{271}{979}\]
\[\frac{316}{2937}\]
\[\frac{542}{2937}\]
None of these
उत्तर
`bb(271/979)`
We have,
`3 cos θ=5 sin θ`
So we can manipulate it as,
`tan θ=3/5`
So now we can get the values of other trigonometric ratios,
`sin θ=3/sqrt34`
`cos θ=5/sqrt34`
`sec θ=sqrt34/5`
So now we will put these values in the equation,
=`( 5 sin θ-2 sec^3 θ+2 cos θ)/(5 sin θ-2 sec^3 θ-2 cos θ)`
`=(5(3/sqrt34)-2((34sqrt34)/125)+10/sqrt34)/(5(3/sqrt34)+2((34sqrt34)/125)-10/sqrt34)`
`=((15)(125)-(2)(34)^2+1250)/((15)(125)+(2)(34)^2-1250)`
`= (1875 - 2312 + 1250)/(1875 + 2312 - 1250)`
`= 813/2937`
`=271/979`
APPEARS IN
संबंधित प्रश्न
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Evaluate cosec 31° − sec 59°
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Solve.
`cos55/sin35+cot35/tan55`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find cosine of 8° 12’
Use tables to find cosine of 9° 23’ + 15° 54’
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
Sin 2B = 2 sin B is true when B is equal to ______.