हिंदी

If 3 cos θ = 5 sin θ, then the value of 5sin⁡θ−2sec3⁡θ+2cos⁡θ5sin⁡θ+2sec3⁡θ−2cos⁡θ is? - Mathematics

Advertisements
Advertisements

प्रश्न

If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?

विकल्प

  • \[\frac{271}{979}\]

  • \[\frac{316}{2937}\]

  • \[\frac{542}{2937}\]

  • None of these

MCQ

उत्तर

`bb(271/979)`

We have, 

`3 cos θ=5 sin θ` 

So we can manipulate it as, 

`tan θ=3/5` 

So now we can get the values of other trigonometric ratios, 

`sin θ=3/sqrt34`

`cos θ=5/sqrt34` 

`sec θ=sqrt34/5` 

So now we will put these values in the equation, 

=`( 5 sin θ-2 sec^3 θ+2 cos θ)/(5 sin θ-2 sec^3 θ-2 cos θ)` 

`=(5(3/sqrt34)-2((34sqrt34)/125)+10/sqrt34)/(5(3/sqrt34)+2((34sqrt34)/125)-10/sqrt34)`

`=((15)(125)-(2)(34)^2+1250)/((15)(125)+(2)(34)^2-1250)`

`= (1875 - 2312 + 1250)/(1875 + 2312 - 1250)`

`= 813/2937`

`=271/979`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 9 | पृष्ठ ५७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


Evaluate cosec 31° − sec 59°


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


Solve.
`cos55/sin35+cot35/tan55`


Solve.
sin15° cos75° + cos15° sin75°


Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`


Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°


Use tables to find cosine of 8° 12’


Use tables to find cosine of 9° 23’ + 15° 54’


Use tables to find the acute angle θ, if the value of sin θ is 0.3827


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0


If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


Find the value of the following:

`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`


In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?


Sin 2B = 2 sin B is true when B is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×