English

If 3 cos θ = 5 sin θ, then the value of 5sin⁡θ−2sec3⁡θ+2cos⁡θ5sin⁡θ+2sec3⁡θ−2cos⁡θ is? - Mathematics

Advertisements
Advertisements

Question

If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?

Options

  • \[\frac{271}{979}\]

  • \[\frac{316}{2937}\]

  • \[\frac{542}{2937}\]

  • None of these

MCQ

Solution

`bb(271/979)`

We have, 

`3 cos θ=5 sin θ` 

So we can manipulate it as, 

`tan θ=3/5` 

So now we can get the values of other trigonometric ratios, 

`sin θ=3/sqrt34`

`cos θ=5/sqrt34` 

`sec θ=sqrt34/5` 

So now we will put these values in the equation, 

=`( 5 sin θ-2 sec^3 θ+2 cos θ)/(5 sin θ-2 sec^3 θ-2 cos θ)` 

`=(5(3/sqrt34)-2((34sqrt34)/125)+10/sqrt34)/(5(3/sqrt34)+2((34sqrt34)/125)-10/sqrt34)`

`=((15)(125)-(2)(34)^2+1250)/((15)(125)+(2)(34)^2-1250)`

`= (1875 - 2312 + 1250)/(1875 + 2312 - 1250)`

`= 813/2937`

`=271/979`

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.5 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.5 | Q 9 | Page 57

RELATED QUESTIONS

If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.


Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


if `sin theta = 1/sqrt2`  find all other trigonometric ratios of angle θ.


if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)` 


Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA


For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`


Use tables to find cosine of 26° 32’


Use tables to find cosine of 9° 23’ + 15° 54’


If A and B are complementary angles, prove that:

cot A cot B – sin A cos B – cos A sin B = 0


If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\] 


If tan2 45° − cos2 30° = x sin 45° cos 45°, then x


If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\] 


\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to


Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)


Express the following in term of angles between 0° and 45° :

cos 74° + sec 67°


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.

cos(90° - A) · sec 77° = 1


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`


The value of (tan1° tan2° tan3° ... tan89°) is ______.


Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×