Advertisements
Advertisements
Question
If 3 cos θ = 5 sin θ, then the value of
Options
\[\frac{271}{979}\]
\[\frac{316}{2937}\]
\[\frac{542}{2937}\]
None of these
Solution
`bb(271/979)`
We have,
`3 cos θ=5 sin θ`
So we can manipulate it as,
`tan θ=3/5`
So now we can get the values of other trigonometric ratios,
`sin θ=3/sqrt34`
`cos θ=5/sqrt34`
`sec θ=sqrt34/5`
So now we will put these values in the equation,
=`( 5 sin θ-2 sec^3 θ+2 cos θ)/(5 sin θ-2 sec^3 θ-2 cos θ)`
`=(5(3/sqrt34)-2((34sqrt34)/125)+10/sqrt34)/(5(3/sqrt34)+2((34sqrt34)/125)-10/sqrt34)`
`=((15)(125)-(2)(34)^2+1250)/((15)(125)+(2)(34)^2-1250)`
`= (1875 - 2312 + 1250)/(1875 + 2312 - 1250)`
`= 813/2937`
`=271/979`
APPEARS IN
RELATED QUESTIONS
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Use tables to find cosine of 26° 32’
Use tables to find cosine of 9° 23’ + 15° 54’
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
The value of (tan1° tan2° tan3° ... tan89°) is ______.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)