Advertisements
Advertisements
Question
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
Solution
cos (90° - A) · sec 77° = 1
⇒ cos(90° - A) = `1/(sec 77°)`
⇒ cos(90° - A) = cos 77°
⇒ 90° - A = 77°
⇒ - A = 77° - 90°
⇒ - A = - 13°
⇒ A = 13°
APPEARS IN
RELATED QUESTIONS
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
solve.
sec2 18° - cot2 72°
Evaluate.
sin235° + sin255°
Evaluate:
tan(55° - A) - cot(35° + A)
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Use trigonometrical tables to find tangent of 17° 27'
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If tanθ = 2, find the values of other trigonometric ratios.
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =