Advertisements
Advertisements
प्रश्न
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
उत्तर
cos (90° - A) · sec 77° = 1
⇒ cos(90° - A) = `1/(sec 77°)`
⇒ cos(90° - A) = cos 77°
⇒ 90° - A = 77°
⇒ - A = 77° - 90°
⇒ - A = - 13°
⇒ A = 13°
APPEARS IN
संबंधित प्रश्न
Evaluate:
cosec (65° + A) – sec (25° – A)
Use tables to find cosine of 26° 32’
Write the maximum and minimum values of cos θ.
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If tan θ = 1, then sin θ . cos θ = ?
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
If sec A + tan A = x, then sec A = ______.