Advertisements
Advertisements
प्रश्न
Write the maximum and minimum values of cos θ.
उत्तर
The maximum value of cosθ is 1 and the minimum value of cosθ is -1 because value of cosθ lies between −1 and 1
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
What is the value of (cos2 67° – sin2 23°)?
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Use tables to find cosine of 8° 12’
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
The value of cos 1° cos 2° cos 3° ..... cos 180° is
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
The value of tan 1° tan 2° tan 3°…. tan 89° is
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
`tan 47^circ/cot 43^circ` = 1