Advertisements
Advertisements
प्रश्न
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
पर्याय
1
\[\sqrt{3}\]
\[\frac{1}{2}\]
\[\frac{1}{\sqrt{2}}\]
उत्तर
Given that: `x tan 45° cos 60°=sin 60° cot 60°`
Here we have to find the value of x
We know that ` tan 45°=1, cos 60°=1/2 , sin 60°=sqrt3/2,cot 60°=1/sqrt3`
⇒` x tan 45° cos 60°= sin 60° cot 60°`
⇒` x xx1xx1/2=sqrt3/2xx1/sqrt3`
⇒ `x=1`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Use trigonometrical tables to find tangent of 37°
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Solve: 2cos2θ + sin θ - 2 = 0.
The value of tan 72° tan 18° is
If cot( 90 – A ) = 1, then ∠A = ?
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.