मराठी

If X Tan 45° Cos 60° = Sin 60° Cot 60°, Then X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to 

पर्याय

  • 1

  • \[\sqrt{3}\] 

  • \[\frac{1}{2}\]

  • \[\frac{1}{\sqrt{2}}\]

MCQ

उत्तर

Given that: `x tan 45° cos 60°=sin 60° cot 60°`

Here we have to find the value of x

We know that ` tan 45°=1, cos 60°=1/2 , sin 60°=sqrt3/2,cot 60°=1/sqrt3`  

⇒` x tan 45° cos 60°= sin 60° cot 60°` 

⇒` x xx1xx1/2=sqrt3/2xx1/sqrt3` 

⇒ `x=1` 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 16 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using trigonometric tables, evaluate the following:

`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`


Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`


Express the following in terms of angle between 0° and 45°:

sin 59° + tan 63°


For triangle ABC, show that : `tan  (B + C)/2 = cot  A/2`


Use trigonometrical tables to find tangent of 37°


Use tables to find the acute angle θ, if the value of cos θ is 0.6885


Use tables to find the acute angle θ, if the value of tan θ is 0.2419


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


Evaluate:

3 cos 80° cosec 10° + 2 cos 59° cosec 31°


Prove that:

`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`


Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)


∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.


If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 


Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]


Solve: 2cos2θ + sin θ - 2 = 0.


The value of tan 72° tan 18° is


If cot( 90 – A ) = 1, then ∠A = ?


If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×