Advertisements
Advertisements
प्रश्न
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
उत्तर
Terminal arm passes through (3, 4).
Hence,
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
Solve.
`cos55/sin35+cot35/tan55`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
In the following figure the value of cos ϕ is
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Evaluate: cos2 25° - sin2 65° - tan2 45°
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
If x and y are complementary angles, then ______.