Advertisements
Advertisements
प्रश्न
Evaluate: cos2 25° - sin2 65° - tan2 45°
बेरीज
उत्तर
cos2 25° - sin2 65° - tan2 45°
= [cos(90° - 65°)]2 - sin2 65° - (tan 45°)2
= sin2 65° - sin2 65° - (1)2
= 0 - 1
= - 1.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Use tables to find sine of 47° 32'
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
Find the value of the following:
sin 21° 21′
If sin 3A = cos 6A, then ∠A = ?
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A