Advertisements
Advertisements
प्रश्न
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
पर्याय
cos 60°
sin 60°
tan 60°
sin 30°
उत्तर
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to tan 60°.
Explanation:
`(2 tan 30°)/(1-tan^2 30°)`
As, tan 30° = `1/sqrt3`
By substituting the value we get,
`= (2 xx 1/sqrt3)/(1-(1/sqrt3)^2)`
`= (2/sqrt3)/((3 - 1)/(3))`
`= 3/sqrt3`
`= (3sqrt3)/3`
`= sqrt3`
And, `sqrt3` = tan 60°.
APPEARS IN
संबंधित प्रश्न
What is the value of (cos2 67° – sin2 23°)?
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Solve.
`sec75/(cosec15)`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate.
cos225° + cos265° - tan245°
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Sin 2B = 2 sin B is true when B is equal to ______.