मराठी

If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 

पर्याय

  •  1

  • −1

  • \[\sqrt{3}\]

  • \[\frac{1}{\sqrt{3}}\]

MCQ

उत्तर

Given that:  sin θ=cos (20-45°) and θ and 2θ-45 are acute angle 

We have to find  tan θ 

⇒` sin θ=cos (2θ-45°)` 

⇒`90°-θ=2θ-45θ` 

⇒`3θ=135°` 

Where θ and` 2θ-45°`  are acute angles

Since `θ =45°` 

Now

tan θ 

 = tan 45°   Put θ=45° 

=1 

 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 23 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If the angle θ= –60º, find the value of cosθ.


Without using trigonometric tables evaluate the following:

`(i) sin^2 25º + sin^2 65º `


Show that : `sin26^circ/sec64^circ  + cos26^circ/(cosec64^circ) = 1`


For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`


Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°


Prove that:

`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`


Evaluate:

`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`


If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B


Write the maximum and minimum values of sin θ.


Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 

If 8 tan x = 15, then sin x − cos x is equal to 


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]


If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A


`tan 47^circ/cot 43^circ` = 1


The value of the expression (cos2 23° – sin2 67°) is positive.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×