Advertisements
Advertisements
प्रश्न
The value of the expression (cos2 23° – sin2 67°) is positive.
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
Since, (a2 – b2) = (a + b)(a – b)
cos2 23° – sin2 67° = (cos 23° + sin 67°)(cos 23° – sin 67°)
= [cos 23° + sin(90° – 23°)] [cos 23° – sin(90° – 23°)]
= (cos 23° + cos 23°)(cos 23° – cos 23°) ...(∵ sin(90° – θ) = cos θ)
= (cos 23° + cos 23°).0
= 0, which is neither positive nor negative
APPEARS IN
संबंधित प्रश्न
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find sine of 47° 32'
Use tables to find cosine of 2° 4’
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
What is the maximum value of \[\frac{1}{\sec \theta}\]
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
Find the value of the following:
sin 21° 21′
The value of tan 72° tan 18° is
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.