Advertisements
Advertisements
प्रश्न
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
पर्याय
−2
2
1
0
उत्तर
We have to find the value of the following expression
`(tan 55°)/(cot 35°)+cot 1° cot 2° cot 3°.......cot 90°`
= `(tan 55°)/(cot 35°)+cot 1° cot 2° cot 3° ........ cot 90°`
`= tan (90°-35°)/cot 35°+cot (90°-89°)cot (90°-88°)cot(90°-87°)°......cot 87 cot 88 cot 89........ cot 90°`
`= (cot 35°)/(cot 35°)+tan 89° tan 88° tan 87°...... cot 87° cot 88° cot 89°.......cot 90°`
=` 1xx1xx1xx1........xx0`
`= 1 `
`"As cot " 90°=0`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
`sec75/(cosec15)`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Prove that:
sec (70° – θ) = cosec (20° + θ)
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
What is the maximum value of \[\frac{1}{\sec \theta}\]
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
`(sin 75^circ)/(cos 15^circ)` = ?