मराठी

P the Value of Tan 55 ° Cot 35 ° + Cot 1° Cot 2° Cot 3° .... Cot 90°, is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is

पर्याय

  •  −2

  •  2

  • 1

  • 0

MCQ

उत्तर

We have to find the value of the following expression 

`(tan 55°)/(cot 35°)+cot 1° cot 2° cot 3°.......cot 90°` 

= `(tan 55°)/(cot 35°)+cot 1° cot 2° cot 3° ........ cot 90°` 

`= tan (90°-35°)/cot 35°+cot (90°-89°)cot (90°-88°)cot(90°-87°)°......cot 87 cot 88 cot 89........ cot 90°` 

`= (cot 35°)/(cot 35°)+tan 89° tan 88° tan 87°...... cot 87° cot 88° cot 89°.......cot 90°`  

=` 1xx1xx1xx1........xx0` 

`= 1 `

`"As cot " 90°=0`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 33 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using trigonometric tables evaluate the following:

`(i) sin^2 25º + sin^2 65º `


If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`


if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`


Solve.
`sec75/(cosec15)`


Show that : `sin26^circ/sec64^circ  + cos26^circ/(cosec64^circ) = 1`


Evaluate:

cos 40° cosec 50° + sin 50° sec 40°


Evaluate:

3 cos 80° cosec 10° + 2 cos 59° cosec 31°


Prove that:

sec (70° – θ) = cosec (20° + θ)


If A and B are complementary angles, prove that:

cot B + cos B = sec A cos B (1 + sin B)


If A and B are complementary angles, prove that:

cot A cot B – sin A cos B – cos A sin B = 0


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


What is the maximum value of \[\frac{1}{\sec \theta}\] 


If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 


\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to 


Express the following in term of angles between 0° and 45° :

cos 74° + sec 67°


Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`


`(sin 75^circ)/(cos 15^circ)` = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×