Advertisements
Advertisements
प्रश्न
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
उत्तर
`2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
= `2(tan(90° - 33°))/(cot33°) - (cot(90° - 20°))/(tan20°) - sqrt(2) (1/sqrt(2))`
= `2(cot33°)/(cot33°) - (tan20°)/(tan20°) - 1`
= 2 - 1 - 1
= 0.
APPEARS IN
संबंधित प्रश्न
Solve.
sin15° cos75° + cos15° sin75°
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
If sec A + tan A = x, then sec A = ______.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)